Carburador
|
Carburadores Electrónicos
Estos carburadores van equipados con sensores y actuadores que por medio de una unidad electrónica de control (ECU) se encargan de ajustar los valores de funcionamiento de forma muy precisa. Estos carburadores han sido el paso previo a los sistemas de inyección. Han permitido realizar unos ajustes más precisos en la dosificación de la mezcla y han conseguido unas menores emisiones contaminantes en los gases de escape, en comparación con los de tipo mecánico. En estos carburadores se aprovecha la precisión de control de la mariposa de gases, por parte de los actuadores electrónicos, para reducir el consumo al ralentí, en marcha lenta (circulación urbana), y en las retenciones del motor.
Los actuadores reciben las señales de una unidad de control (centralita) que a su vez computa las señales eléctricas recibidas del motor, régimen de revoluciones, presión atmosférica, presión en el colector de admisión, posición del pedal acelerador, grado de apertura de la mariposa, etc. en función de las señales mandadas por estos transductores a la centralita, esta manda una señal eléctrica adecuada en valor, polaridad y tiempo a los actuadores electrónicos situados en el carburador, los cuales controlan las siguientes funciones: arranque en frío, ralentí, marcha económica, aceleración y una que consiste en cortar el suministro en el sistema, principalmente en el circuito de ralentí, cuando con acelerador suelto el vehículo arrastra el motor a mas de 1200 r.p.m..
Ejemplo de modelos de automóvil que montan carburadores electrónicos son: el Austin Montego, Rover 216, BMW 316, BMW 518, etc.
Estos carburadores van equipados con sensores y actuadores que por medio de una unidad electrónica de control (ECU) se encargan de ajustar los valores de funcionamiento de forma muy precisa. Estos carburadores han sido el paso previo a los sistemas de inyección. Han permitido realizar unos ajustes más precisos en la dosificación de la mezcla y han conseguido unas menores emisiones contaminantes en los gases de escape, en comparación con los de tipo mecánico. En estos carburadores se aprovecha la precisión de control de la mariposa de gases, por parte de los actuadores electrónicos, para reducir el consumo al ralentí, en marcha lenta (circulación urbana), y en las retenciones del motor.
Los actuadores reciben las señales de una unidad de control (centralita) que a su vez computa las señales eléctricas recibidas del motor, régimen de revoluciones, presión atmosférica, presión en el colector de admisión, posición del pedal acelerador, grado de apertura de la mariposa, etc. en función de las señales mandadas por estos transductores a la centralita, esta manda una señal eléctrica adecuada en valor, polaridad y tiempo a los actuadores electrónicos situados en el carburador, los cuales controlan las siguientes funciones: arranque en frío, ralentí, marcha económica, aceleración y una que consiste en cortar el suministro en el sistema, principalmente en el circuito de ralentí, cuando con acelerador suelto el vehículo arrastra el motor a mas de 1200 r.p.m..
Ejemplo de modelos de automóvil que montan carburadores electrónicos son: el Austin Montego, Rover 216, BMW 316, BMW 518, etc.
Un tipo de carburador electrónico es el Pierburg 34/34 2BE también conocido por el sistema de gestión electrónica que lo controla: Ecotronic de Bosch. La centralita actúa sobre el carburador mediante dos electroválvulas que controlan los pasos de presión y vacío a una cámara con membrana que varia la posición de la mariposa, a su vez ésta mediante la propia varilla de mando envía señales a la centralita mediante un potenciometro que controla la posición del pedal del acelerador.
Se trata de un carburador vertical invertido o descendente de doble cuerpo, con apertura diferenciada de las mariposas. La mariposa del cuerpo secundario esta accionada por una cápsula reumática. El eje de las mariposas esta hecho de acero igual que las mariposas, todos los calibres y tubos de emulsión están fabricados de latón. El dispositivo de arranque en frío es de accionamiento automático y actúa solamente sobre el primer cuerpo.
Se trata de un carburador vertical invertido o descendente de doble cuerpo, con apertura diferenciada de las mariposas. La mariposa del cuerpo secundario esta accionada por una cápsula reumática. El eje de las mariposas esta hecho de acero igual que las mariposas, todos los calibres y tubos de emulsión están fabricados de latón. El dispositivo de arranque en frío es de accionamiento automático y actúa solamente sobre el primer cuerpo.
Este carburador (figura inferior) esta formado por tres cuerpos: el cuerpo superior (A), el cuerpo principal (B) y el cuerpo de la mariposa (C). Una junta aislante (20) se coloca entre el cuerpo principal y el cuerpo de mariposas para evitar que se transmita el calor del motor, al cuerpo principal del carburador.
Esencialmente el funcionamiento de arranque en frío, aceleración, carga parcial, deceleración y corte de la alimentación al motor es controlada por una unidad de control ECU que se sirve de las informaciones que le transmite los distintos sensores colocados en el motor y en el propio carburador. El sistemas de control electrónico es conocido como: ECOTRONIC.
Control de combustible
Este carburador utiliza un doble flotador que están separados uno por cada cuba. Cada cuba alimenta a un cuerpo del carburador.
El combustible entra en el carburador a través de un pequeño filtro y a través de un único conducto que después se divide para alimentar las dos cubas. Cada cuba tiene una válvula de aguja que controla la entrada de combustible. Las cubas son aireadas internamente tomando el aire filtrado del colector de admisión del propio carburador.
La cuba del cuerpo secundario del carburador tiene una válvula de corte (3), como se ve en la figura inferior, situada antes de la válvula de aguja (5) que es movida por el flotador (6). Con el motor funcionando a ralentí y pequeñas aperturas de la mariposa de gases, el vacío que tenemos por debajo de la mariposa de gases del cuerpo secundario se transmite por una canalización (1) hasta la cámara inferior donde esta la membrana (2) que mueve la válvula de corte de combustible (3), tirando de la membrana y por tanto de la válvula hacia abajo y cortando el suministro de combustible de entrada a la cuba. A medida que se abre la mariposa del cuerpo secundario (7), disminuye el vacío por debajo de la propia mariposa, por lo tanto, el vacío que actuaba sobre la membrana ya no es suficiente para vencer el muelle (4) que actúa sobre la membrana, por lo que la válvula de corte se abre dejando pasar combustible hacia la cuba.
Este carburador utiliza un doble flotador que están separados uno por cada cuba. Cada cuba alimenta a un cuerpo del carburador.
El combustible entra en el carburador a través de un pequeño filtro y a través de un único conducto que después se divide para alimentar las dos cubas. Cada cuba tiene una válvula de aguja que controla la entrada de combustible. Las cubas son aireadas internamente tomando el aire filtrado del colector de admisión del propio carburador.
La cuba del cuerpo secundario del carburador tiene una válvula de corte (3), como se ve en la figura inferior, situada antes de la válvula de aguja (5) que es movida por el flotador (6). Con el motor funcionando a ralentí y pequeñas aperturas de la mariposa de gases, el vacío que tenemos por debajo de la mariposa de gases del cuerpo secundario se transmite por una canalización (1) hasta la cámara inferior donde esta la membrana (2) que mueve la válvula de corte de combustible (3), tirando de la membrana y por tanto de la válvula hacia abajo y cortando el suministro de combustible de entrada a la cuba. A medida que se abre la mariposa del cuerpo secundario (7), disminuye el vacío por debajo de la propia mariposa, por lo tanto, el vacío que actuaba sobre la membrana ya no es suficiente para vencer el muelle (4) que actúa sobre la membrana, por lo que la válvula de corte se abre dejando pasar combustible hacia la cuba.
Funcionamiento a ralentí, bajas r.p.m. y progresión
El circuito de ralentí o de baja como se le llama en algunos manuales, esta formado por un pozo (figura inferior) donde entra el combustible por su parte inferior. En el pozo tenemos un tubo de emulsión y el surtidor de ralentí (26). El aire de ralentí es controlado por una aguja cónica (21) situada en el corrector de entrada de aire. La mezcla dependerá de los agujeros destapados del tubo de emulsión. Una vez hecha la mezcla,un valor nominal que tiene programado. Como las condiciones de funcionamiento del motor a ralentí varían según la temperatura o la carga, la ECU a través del posicionador de mariposa corrige las desviaciones de la velocidad de ralentí. El regulador no actúa para variaciones de velocidad menores de 100 r.p.m..
El tornillo bypass de la mariposa viene regulado de fabrica y sellado para no manipularlo. No se debe romper el precinto.
El circuito de ralentí o de baja como se le llama en algunos manuales, esta formado por un pozo (figura inferior) donde entra el combustible por su parte inferior. En el pozo tenemos un tubo de emulsión y el surtidor de ralentí (26). El aire de ralentí es controlado por una aguja cónica (21) situada en el corrector de entrada de aire. La mezcla dependerá de los agujeros destapados del tubo de emulsión. Una vez hecha la mezcla,un valor nominal que tiene programado. Como las condiciones de funcionamiento del motor a ralentí varían según la temperatura o la carga, la ECU a través del posicionador de mariposa corrige las desviaciones de la velocidad de ralentí. El regulador no actúa para variaciones de velocidad menores de 100 r.p.m..
El tornillo bypass de la mariposa viene regulado de fabrica y sellado para no manipularlo. No se debe romper el precinto.
Sensor de posición de la mariposa
Cuando la mariposa abre o cierra, este movimiento giratorio es registrado por un potenciometro que es una resistencia variable, que traduce el valor del movimiento en un valor resistivo, que será interpretado por la ECU. En conjunto con el interruptor de mariposa se genera una tensión variable que se envía a la ECU.
Cuando la mariposa abre o cierra, este movimiento giratorio es registrado por un potenciometro que es una resistencia variable, que traduce el valor del movimiento en un valor resistivo, que será interpretado por la ECU. En conjunto con el interruptor de mariposa se genera una tensión variable que se envía a la ECU.
Deceleración
Durante la deceleración para regímenes por encima de 1400 r.p.m., la mariposa esta totalmente cerrada por el actuador y corta el suministro de combustible. Para que la maif;">Control de la velocidad de ralentí
La velocidad de ralentí del motor se mantiene constante, independientemente de las cargas del motor y su temperatura. La ECU compara la velocidad real del motor con un valorire que entra pone programado. C5) y se emulsiona a través de los orificios del tubo de emulsión. El resultado es una mezcla de aire combustible que se descarga sobre el difusor (8) del carburador a través de un tubo inyector.
Durante la deceleración para regímenes por encima de 1400 r.p.m., la mariposa esta totalmente cerrada por el actuador y corta el suministro de combustible. Para que la maif;">Control de la velocidad de ralentí
La velocidad de ralentí del motor se mantiene constante, independientemente de las cargas del motor y su temperatura. La ECU compara la velocidad real del motor con un valorire que entra pone programado. C5) y se emulsiona a través de los orificios del tubo de emulsión. El resultado es una mezcla de aire combustible que se descarga sobre el difusor (8) del carburador a través de un tubo inyector.
Cuerpo secundario
Un orificio esta situado en ambos difusores del cuerpo primario y secundario del carburador. El vacío que existe en los difusores debido al paso de aire hacia los cilindros del motor, se transmite a través de un conducto común, a una toma de vacío a la que se conecta una tubería que a su vez transmite el vació a la cápsula neumática (6, figura inferior) que mueve la mariposa de gases del cuerpo secundario del carburador.
Durante el funcionamiento normal y a bajas r.p.m. del motor, solo funciona el cuerpo primario del carburador. Cuando la velocidad del aire crece debido a un aumento de r.p.m. del motor, la depresión aumenta en la toma de vació que se conecta a la cápsula neumática. Por lo tanto llega un momento que el vacío es lo suficientemente alto para actuar sobre la cápsula por lo que se abre la mariposa deriposa no cierre rápidamente cuando se suelta el pedal del acelerador, el actuador hace de amortiguador. Cuando la velocidad cae por debajo de 1400 r.p.m. el actuador reabre la mariposa hasta conseguir la velocidad nominal de ralentí.
Cuando la mariposa esta totalmente cerrada un orificio situado por debajo de la misma, esta expuesto al vacío que provocan los pistones del motor en su funcionamiento, este vacío es conducido a una válvula neumática, La válvula actúa abriendo un conducto que comunica el colector de admisión del carburador con la caja del filtro de aire. El vacío (depresión) en el colector de admisión es aliviado durante la deceleración.
Un orificio esta situado en ambos difusores del cuerpo primario y secundario del carburador. El vacío que existe en los difusores debido al paso de aire hacia los cilindros del motor, se transmite a través de un conducto común, a una toma de vacío a la que se conecta una tubería que a su vez transmite el vació a la cápsula neumática (6, figura inferior) que mueve la mariposa de gases del cuerpo secundario del carburador.
Durante el funcionamiento normal y a bajas r.p.m. del motor, solo funciona el cuerpo primario del carburador. Cuando la velocidad del aire crece debido a un aumento de r.p.m. del motor, la depresión aumenta en la toma de vació que se conecta a la cápsula neumática. Por lo tanto llega un momento que el vacío es lo suficientemente alto para actuar sobre la cápsula por lo que se abre la mariposa deriposa no cierre rápidamente cuando se suelta el pedal del acelerador, el actuador hace de amortiguador. Cuando la velocidad cae por debajo de 1400 r.p.m. el actuador reabre la mariposa hasta conseguir la velocidad nominal de ralentí.
Cuando la mariposa esta totalmente cerrada un orificio situado por debajo de la misma, esta expuesto al vacío que provocan los pistones del motor en su funcionamiento, este vacío es conducido a una válvula neumática, La válvula actúa abriendo un conducto que comunica el colector de admisión del carburador con la caja del filtro de aire. El vacío (depresión) en el colector de admisión es aliviado durante la deceleración.
Parada del motor
A veces el encendido del motor es desconectado y el actuador de mariposa de gases se comporta como en la fase de deceleración, la mariposa será totalmente cerrada para prevenir queuerpo secundario del carburador.
Durante el funcionamiento normal y a bajas r.p.m. del motor, solo funciona el cuerpo primario del carburador. Cuando la velocidad del aire crece debido a un aumento de r.p.m. del motor, la depresión aumenta en la toma de vació que se conecta a la cápsula neumática. Por lo tanto llega un momento que el vacío es lo suficientemente alto para actuar sobre la cápsula por lo que se abre la mariposa deconvencional, el sistema de enriquecimiento durante la aceleración es controlado por el movimiento momentáneo de la mariposa estranguladora cercana a la posición de cierre.
La duración del movimiento es controlada por la ECU, de acuerdo con las informaciones que recibe de los sensores de: régimen motor, temperatura y posición de mariposa. La mariposa estranguladora es posicionada por un actuador que corrige la mezcla en condiciones de carga parcial del motor. La mariposa estranguladora esta conectada mecánicamente a la válvula de aguja que controla el aire de ralentí,
Cuando la mariposa estranguladora se mueve para cerrarse, la aguja se inserta en el soplador (calibre de aire) y la mezcla de ralentí y de progresión se enriquecen.
A veces el encendido del motor es desconectado y el actuador de mariposa de gases se comporta como en la fase de deceleración, la mariposa será totalmente cerrada para prevenir queuerpo secundario del carburador.
Durante el funcionamiento normal y a bajas r.p.m. del motor, solo funciona el cuerpo primario del carburador. Cuando la velocidad del aire crece debido a un aumento de r.p.m. del motor, la depresión aumenta en la toma de vació que se conecta a la cápsula neumática. Por lo tanto llega un momento que el vacío es lo suficientemente alto para actuar sobre la cápsula por lo que se abre la mariposa deconvencional, el sistema de enriquecimiento durante la aceleración es controlado por el movimiento momentáneo de la mariposa estranguladora cercana a la posición de cierre.
La duración del movimiento es controlada por la ECU, de acuerdo con las informaciones que recibe de los sensores de: régimen motor, temperatura y posición de mariposa. La mariposa estranguladora es posicionada por un actuador que corrige la mezcla en condiciones de carga parcial del motor. La mariposa estranguladora esta conectada mecánicamente a la válvula de aguja que controla el aire de ralentí,
Cuando la mariposa estranguladora se mueve para cerrarse, la aguja se inserta en el soplador (calibre de aire) y la mezcla de ralentí y de progresión se enriquecen.
Actuador del estrangulador
Este dispositivo controla la mezcla durante el funcionamiento del motor a carga parcial, aceleración y fase de calentamiento mediante una mariposa estranguladora. Esta es accionada por un acte entra por un orificio calibrado situado en la parte alta del carburador. La mezcla sale a través del inyector (4 y 5) del enriquecedor y se mezcla con el aire que pasa por el carburador hacia los cilindros. Hay un enriquecedor para cada uno de los cuerpos del carburador y su salida esta en la parte alta del mismo.
Este dispositivo controla la mezcla durante el funcionamiento del motor a carga parcial, aceleración y fase de calentamiento mediante una mariposa estranguladora. Esta es accionada por un acte entra por un orificio calibrado situado en la parte alta del carburador. La mezcla sale a través del inyector (4 y 5) del enriquecedor y se mezcla con el aire que pasa por el carburador hacia los cilindros. Hay un enriquecedor para cada uno de los cuerpos del carburador y su salida esta en la parte alta del mismo.
Cuerpo secundario
Un orificio esta situado en ambos difusores del cuerpo primario y secundario del carburador. El vacío que existe en los difusores debido al paso de aire hacia los cilindros del motor, se transmite a través de un conducto común, a una toma de vacío a la que se conecta una tubería que a su vez transmite el vació a la cápsula neumática (6, figura inferior) que mueve la mariposa de gases del cuerpo secundario del carburador.
Durante el funcionamiento normal y a bajas r.p.m. del motor, solo funciona el cuerpo primario del carburador. Cuando la velocidad del aire crece debido a un aumento de r.p.m. del motor, la depresión aumenta en la toma de vació que se conecta a la cápsula neumática. Por lo tanto llega un momento que el vacío es lo suficientemente alto para actuar sobre la cápsula por lo que se abre la mariposa de gases del cuerpo secundario. Una vez que se abre esta mariposa, se refuerza la acción del vacío sobre la cápsula neumática, por lo que se ira abriendo cada vez mas la mariposa del segundo cuerpo.
El mecanismo de accionamiento de la mariposa del cuerpo primario esta preparado para impedir que se abra la mariposa del cuerpo secundario, cuando la velocidad del aire que pasa por el carburador es alto, por ir el vehículo a altas velocidades pero con aperturas de mariposa pequeñas. La mariposa del cuerpo secundario no se abrirá hasta que la del cuerpo primario no alcance los 2/3 del total de su apertura.
Un termocontacto (8, figura inferior) es conectado a la tubería de vacío que controla la cápsula neumática. Esto sirve para mantener inactiva la mariposa de gases del cuerpo secundario durante la fase de calentamiento del motor. El termocontacto queda cerrado cuando el motor esta frío y abre a una temperatura predeterminada.
Un circuito de progresión es utilizado para compensar la indecisión de la mariposa secundaria a la hora de empezar su apertura. El combustible se toma de la cuba secundaria (figura superior) y se conduce a través del circuito de progresión. Se dispone de un pozo vertical con un tubo de emulsión (13) en su interior, el combustible entra por un calibre (12) situado en la parte inferior del pozo y en la parte superior del pozo hay un calibre de aire (14) que se emulsiona con el combustible. El calibre de aire o soplador (15) se comunica al tubo de emulsión (13). En el tubo de emulsión se mezcla el combustible con aire, una vez que pasa al circuito de progresión, la mezcla se vuelve a mezclar con mas aire que entra por el orificio (14), para mas tarde desembocar por los orificios de progresión al colector del carburador cuando empieza a abrirse la mariposa del cuerpo secundario.
Un orificio esta situado en ambos difusores del cuerpo primario y secundario del carburador. El vacío que existe en los difusores debido al paso de aire hacia los cilindros del motor, se transmite a través de un conducto común, a una toma de vacío a la que se conecta una tubería que a su vez transmite el vació a la cápsula neumática (6, figura inferior) que mueve la mariposa de gases del cuerpo secundario del carburador.
Durante el funcionamiento normal y a bajas r.p.m. del motor, solo funciona el cuerpo primario del carburador. Cuando la velocidad del aire crece debido a un aumento de r.p.m. del motor, la depresión aumenta en la toma de vació que se conecta a la cápsula neumática. Por lo tanto llega un momento que el vacío es lo suficientemente alto para actuar sobre la cápsula por lo que se abre la mariposa de gases del cuerpo secundario. Una vez que se abre esta mariposa, se refuerza la acción del vacío sobre la cápsula neumática, por lo que se ira abriendo cada vez mas la mariposa del segundo cuerpo.
El mecanismo de accionamiento de la mariposa del cuerpo primario esta preparado para impedir que se abra la mariposa del cuerpo secundario, cuando la velocidad del aire que pasa por el carburador es alto, por ir el vehículo a altas velocidades pero con aperturas de mariposa pequeñas. La mariposa del cuerpo secundario no se abrirá hasta que la del cuerpo primario no alcance los 2/3 del total de su apertura.
Un termocontacto (8, figura inferior) es conectado a la tubería de vacío que controla la cápsula neumática. Esto sirve para mantener inactiva la mariposa de gases del cuerpo secundario durante la fase de calentamiento del motor. El termocontacto queda cerrado cuando el motor esta frío y abre a una temperatura predeterminada.
Un circuito de progresión es utilizado para compensar la indecisión de la mariposa secundaria a la hora de empezar su apertura. El combustible se toma de la cuba secundaria (figura superior) y se conduce a través del circuito de progresión. Se dispone de un pozo vertical con un tubo de emulsión (13) en su interior, el combustible entra por un calibre (12) situado en la parte inferior del pozo y en la parte superior del pozo hay un calibre de aire (14) que se emulsiona con el combustible. El calibre de aire o soplador (15) se comunica al tubo de emulsión (13). En el tubo de emulsión se mezcla el combustible con aire, una vez que pasa al circuito de progresión, la mezcla se vuelve a mezclar con mas aire que entra por el orificio (14), para mas tarde desembocar por los orificios de progresión al colector del carburador cuando empieza a abrirse la mariposa del cuerpo secundario.
Enriquecimiento a plena carga
A plenas cargas y altas revoluciones del motor, la velocidad del aire que atraviesa el carburador creario.
A plenas cargas y altas revoluciones del motor, la velocidad del aire que atraviesa el carburador creario.
Sistema de arranque en frío
El sistema de accionamiento del estrangulador es totalmente automático y actúa sobre una mariposa estranguladora (23) situada en el cuerpo primario del carburador, de acuerdo con la temperatura del colector de admisión y con las necesidades de alimentación del motor. La posición de la mariposa de gases tanto para funcionamiento en frío como a temperatura normal es determinada automáticamente.
La preparación del sistema de arranque en frío presionando el pedal acelerador como se hace en los carburadores convencionales, no es necesario.
La mariposa de gases esta colocada en la posición de arranque por el actuador de mariposa, un poco después de que el motor se pare. Una vez que el encendido es conectado, la mariposa estranguladora es posicionada de acuerdo con la temperatura. La timoneria de mando mueve la válvula de aguja (21), asegurando que la aguja interfiera en el corrector de aire de admisión por lo tanto la mezcla que se suministra al motor es enriquecida. Una vez que el motor esta arrancado, la posición de la mariposa de gases y de la válvula estranguladora, dependerá de la temperatura.
Mientras que el motor se calienta, el actuador de la mariposa de gases reducirá el ángulo de apertura de la misma. Una vez que el motor alcanza la temperatura normal de funcionamiento la mariposa de gases es colocada en la posición de motor caliente. Igualmente la mariposa estranguladora abrirá durante el calentamiento del motor. Como siempre el enriquecimiento a carga parcial dependerá de la posición de la mariposa estranguladora una vez que el motor ya esta caliente.
El sistema de accionamiento del estrangulador es totalmente automático y actúa sobre una mariposa estranguladora (23) situada en el cuerpo primario del carburador, de acuerdo con la temperatura del colector de admisión y con las necesidades de alimentación del motor. La posición de la mariposa de gases tanto para funcionamiento en frío como a temperatura normal es determinada automáticamente.
La preparación del sistema de arranque en frío presionando el pedal acelerador como se hace en los carburadores convencionales, no es necesario.
La mariposa de gases esta colocada en la posición de arranque por el actuador de mariposa, un poco después de que el motor se pare. Una vez que el encendido es conectado, la mariposa estranguladora es posicionada de acuerdo con la temperatura. La timoneria de mando mueve la válvula de aguja (21), asegurando que la aguja interfiera en el corrector de aire de admisión por lo tanto la mezcla que se suministra al motor es enriquecida. Una vez que el motor esta arrancado, la posición de la mariposa de gases y de la válvula estranguladora, dependerá de la temperatura.
Mientras que el motor se calienta, el actuador de la mariposa de gases reducirá el ángulo de apertura de la misma. Una vez que el motor alcanza la temperatura normal de funcionamiento la mariposa de gases es colocada en la posición de motor caliente. Igualmente la mariposa estranguladora abrirá durante el calentamiento del motor. Como siempre el enriquecimiento a carga parcial dependerá de la posición de la mariposa estranguladora una vez que el motor ya esta caliente.
Sensor de temperatura
Este sensor esta compuesto de una resistencia cuyo valor varia en función de la temperatura. El sensor es del tipo NTC y esta situado en el colector de admisión después del carburador.
Este sensor esta compuesto de una resistencia cuyo valor varia en función de la temperatura. El sensor es del tipo NTC y esta situado en el colector de admisión después del carburador.
Otro tipo de carburador electrónico es el que equipa el Austin Montego con un "S.U" con gestión electrónica del fabricante Lucas. El equipo electrónico se compone ademas de la "centralita" que recibe información de los elementos que enumeramos a continuación:
- Temperatura ambiente a través de un sensor de temperatura.
- Temperatura del liquido refrigerante a través de un termistor o resistencia NTC.
- Posición del estrangulador (válvula abierta o cerrada)
- Revoluciones del motor.
Este carburador, ademas, esta dotado de un sistema de corte de combustible mediante una válvula (2), que actúa siempre que el conductor levante el pie del acelerador y el motor gire por encima de 1200 r.p.m.. Por debajo de ellas, o si la temperatura ambiente es inferior a 0ºC, el sistema se conecta automáticamente. Para evitar que se pueda calar el motor, el corte de combustible no es constante, sino intermitente cada medio segundo.
La centralita o ECU además del corte de combustible controla mediante un motor paso a paso: el arranque en frío, ralentí, aceleración, marcha normal y económica del motor.
No hay comentarios:
Publicar un comentario